Wendell ResslerProfessor of Mathematics

Research

My field is analytic number theory.  I study automorphic forms (and automorphic integrals), Dirichlet series, and Hecke correspondence.  I am especially interested in Hecke groups, rational period functions, binary quadratic forms and continued fractions. 

Publications

W. Ressler, Conjugacy classes and rational period functions for the Hecke groups, Int. J. Number Theory 19 (2023), 757–784.   https://dx.doi.org/10.1142/S1793042123500380 [my pdf]

W. Ressler, Hecke symmetry and rational period functions, Ramanujan J. 41 (2016), 323–334.  https://doi.org/10.1007/s11139-014-9653-9 [my pdf]

G. Hoang and W. Ressler, Conjugacy classes and binary quadratic forms for the Hecke groups, Canad. Math. Bull. 56 (2013), pp. 570–583. https://dx.doi.org/10.4153/CMB-2012-020-x. [our pdf]

W. Ressler, A Hecke correspondence theorem for automorphic integrals with symmetric rational period functions on the Hecke groups, J. Number Theory 130 (2010), pp. 2732–2744. https://doi.org/10.1016/j.jnt.2010.06.009 [my pdf]

W. Ressler, On binary quadratic forms and the Hecke groups, Int. J. Number Theory 5 (2009), pp. 1401-1418. https://doi.org/10.1142/S1793042109002730 [my pdf]

W. Culp-Ressler, Rational period functions on the Hecke groups, Ramanujan J. 5 (2001), pp. 281-294. https://doi.org/10.1023/A:1012926712079 [my pdf]

W. Culp-Ressler and W. Pribitkin, A note on Siegel's proof of Hamburger's Theorem, Contemp. Math. 251 (2000), pp.135-140. https://dx.doi.org/10.1090/conm/251 [our pdf]

W. Culp-Ressler, K. Flood, Sr. A. Heath, and W. Pribitkin, On solutions to Riemann's functional equation, Ramanujan J. 4 (2000), pp. 5-9. https://doi.org/10.1023/A:1009836519389 [our pdf]

W. Culp-Ressler, A Hecke correspondence theorem for modular integrals with rational period functions, Illinois J. Math. 40 (1996), pp. 586-605. https://projecteuclid.org/euclid.ijm/1255985938 [my pdf]

Selected Talks

“Conjugacy classes and rational period functions for the Hecke groups," Mid-Atlantic Seminar On Numbers V, March 27, 2021. [slides]

“The second relation for rational period functions and remainder terms in Hecke correspondence,” Bryn Mawr Summer Seminar, July 1, 2015.  [notes]

“Conjugacy classes for the Hecke groups and related binary quadratic forms,” 29th Automorphic Forms Workshop, University of Michigan, Ann Arbor, March 3, 2015. [slides]

“Cycle integrals and rational period functions I, II,” Bryn Mawr Summer Seminar,  July 24 and August 7, 2014.

“A Perfect Mystery,” Quest For Learning, April 4, 2013.

“Conjugacy classes and binary quadratic forms for the Hecke groups, II,” Bryn Mawr Summer Seminar, July 12, 2012.

“Conjugacy classes and binary quadratic forms for the Hecke groups,” Bryn Mawr Summer Seminar, June 28, 2012.

“Conjugacy classes and binary quadratic forms for the Hecke groups,” Joint Mathematics Colloquium, Franklin & Marshall College and Millersville University, September 28, 2011.

“A Hecke Correspondence Theorem for Automorphic Integrals with Symmetric Rational Period Functions on the Hecke Groups,” Joint Mathematics Meetings, Washington DC, January 7, 2009.

Sample of Courses Taught

Fall 2023

Math 109 Calculus I

Math 471 Analytic Number Theory

Spring 2023

Math 331  Introduction to Analysis (2 sections)

Previous semesters

Math 109  Calculus I (2 sections)

Math 471  Topics in Analytic Number Theory

Math 109  Calculus I

Math 110  Calculus II

Math 111  Calculus III

Math 211  Introduction to Higher Mathematics

Math 229  Linear Algebra and Differential Equations

Math 325  Number Theory

Math 329  Fourier Series

Math 331  Introduction to Analysis

Math 442  Complex Analysis

Math 471  Topics in Analytic Number Theory